Labels

1st Semester 2 Marks 2nd Semester 3rd Semester 4th Semester 5th Semester 6th Semester 7th Semester 8th Semester CS2311 CS2312 CS2361 CS2363 CS2411 Circuit Theory Communication Engineering Computer Practice Laboratory 2 Digital Signal Processing EC2311 EC2312 EE2032 EE2151 EE2155 EE2201 EE2202 EE2203 EE2207 EE2209 EE2257 EE2258 EE2259 EE2302 EE2303 EE2304 EE2305 EE2356 EE2401 EE2403 EE2404 EE2451 EI2403 EI2404 Electrical Machines 2 Electrical Machines 2 Laboratory Electromagnetic Theory Exam Package Fibre Optics and Laser Instruments GE2021 GE2022 GE2112 GE2116 GE2155 GE2211 GS2165 HS2111 HS2161 MG2351 Measurement and Instrumentation Object Oriented Programming Operating Systems PH2111 PH2161 Power System Operation and Control Power System Simulation Laboratory Principles of Management Special Electrical Machines Subject Catalog Technical English II Total Quality Management Transmission and Distribution basic civil and mechanical engineering bio medical instrumentation computer networks control systems cy2111 cy2161 data structures and algorithms design of electrical machines digital logic circuits ee2021 ee2031 ee2036 ee2204 ee2251 ee2252 ee2253 ee2254 ee2255 ee2301 ee2351 ee2352 ee2353 ee2354 ee2355 ee2402 elearning software elective1 elective2 elective3 elective4 electives electric energy generalization utilization and conservation electrical circuits laboratory electrical machines 1 electronic devices and circuits engineering chemistry1 engineering chemistry2 engineering graphics engineering physics1 engineering physics2 engineering practicis laboratory environmental science and engineering exam timetable flexible ac transmission systems fundamentals of computer and programming ge2025 ge2111 ge2152 grade system high voltage direct current transmission high voltage engineering january lab manual linear integrated circuits and applications ma2111 ma2161 ma2211 ma2264 mathematics1 mathematics2 microprocessors and micro controller laboratory microprocessors and microcontrollers notes numerical methods physics laboratory power electronics power plant engineering power system analysis previous questions professional ethics in engineering protection and switchgear question bank solid state drives syllabus technical english1 transforms and partial differential equeations vlsi design
SUBJECT WISE MATERIALS
Semester 1


Semester 2

Semester 3

Semester 4

GATE Question Papers
Semester 5

Semester 6

Semester 7

Semester 8

Other resources

Mar 7, 2012

MA2161 Mathematics II - SUBJECT CATALOG

SUBJECT RESOURCES:

CLICK HERE to access 'Question Banks'


CLICK HERE to access 'Previous Year Question Papers'


CLICK HERE to access 'Important Formulas'


CLICK HERE to search more about this subject



SYLLABUS:



MA2161          MATHEMATICS II                                                                                        L T P C
3 1 0 4


UNIT I ORDINARY DIFFERENTIAL EQUATIONS            12
Higher order linear differential equations with constant coefficients Method of variation of parameters – Cauchys and Legendres linear equations Simultaneous first order linear equations with constant coefficients.

UNIT II            VECTOR CALCULUS           12
Gradient Divergence and Curl Directional derivative Irrotational and solenoidal vector fields Vector integration Greens theorem in a plane, Gauss divergence theorem and stokes’ theorem (excluding proofs) Simple applications involving cubes and rectangular parallelpipeds.

UNIT III           ANALYTIC FUNCTIONS      12
Functions of a complex variable Analytic functions Necessary conditions, Cauchy Riemann equation  and  Sufficient  conditions  (excluding  proofs)   Harmonic  anorthogonal  properties of analytic function Harmonic conjugate Construction of analytic functions Conformal mapping : w= z+c, cz, 1/z, and bilinear transformation.


UNIT IV           COMPLEX INTEGRATIO12
Complex  integration  Statement  and applications of  Cauchys  integratheorem and  Cauchys integral formula Taylor and Laurent expansions Singular points Residues Residue theorem Application of residue theorem to evaluate real integrals Unit circle and semi-circular contour(excluding poles on boundaries).

UNIT V            LAPLACE TRANSFORM     12
Laplace transform Conditions for existence Transform of elementary functions Basic properties
Transform of derivatives and integrals Transform of unit step function and impulse functions
Transform of periodic functions.
Definition of Inverse Laplace transform as contour integral Convolution theorem (excluding proof) Initial and Final value theorems Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.
TOTAL : 60 PERIODS



TEXT BOOK:
rd
1.  Bali  N.  P  and  Manish  Goyal,  Text  book  of  Engineering  Mathematics,  3
Publications (p) Ltd., (2008).


Edition,  Laxmi
th
2.  Grewal. B.S, “Higher Engineering Mathematics, 40
Edition, Khanna Publications, Delhi, (2007).

REFERENCES:
1.  Ramana  B.V,  “Higher  Engineering  Mathematics,Tata  McGraw  Hill  Publishing  Company, New Delhi, (2007).
rd
2.  Glyn James, Advanced Engineering Mathematics, 3
Edition, Pearson Education, (2007).
th
3.  Erwin Kreyszig, Advanced Engineering Mathematics, 7
Edition, Wiley India, (2007).
rd
4.  Jain  R.K  and  Iyengar  S.R.K,  Advanced  Engineering  Mathematics,  3
Publishing House Pvt. Ltd., (2007).
Edition,  Narosa

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Semester 1


Semester 2

Semester 3

Semester 4

Semester 5

Semester 6

Semester 7

Semester 8